Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.07.05.22277283

RESUMO

Antibody titers wane after two-dose COVID-19 vaccinations, but individual variation in vaccine-elicited antibody dynamics remains to be explored. Here, we created a personalized antibody score that enables individuals to infer their antibody status by use of a simple calculation. We recently developed a mathematical model of B cell differentiation to accurately interpolate the longitudinal data from a community-based cohort in Fukushima, Japan, which consists of 2,159 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time course of the vaccine- elicited antibody response, we first elucidated individual background factors that contributed to the main features of antibody dynamics, i.e., the peak, the duration, and the area under the curve. We found that increasing age was a negative factor and a longer interval between the two doses was a positive factor for individual antibody level. We also found that the presence of underlying disease and the use of medication affected antibody levels negatively, whereas the presence of adverse reactions upon vaccination affected antibody levels positively. We then applied to these factors a recently proposed computational method to optimally fit clinical scores, which resulted in an integer-based score that can be used to evaluate the antibody status of individuals from their basic demographic and health information. This score can be easily calculated by individuals themselves or by medical practitioners. There is a potential usefulness of this score for identifying vulnerable populations and encouraging them to get booster vaccinations.


Assuntos
COVID-19
2.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.06.11.22276266

RESUMO

Recent studies have provided insights into the effect of vaccine boosters on recall immunity. Given the limited global supply of COVID-19 vaccines, identifying vulnerable populations with lower sustained vaccine-elicited antibody titers is important for targeting individuals for booster vaccinations. Here we investigated longitudinal data in a cohort of 2,526 people in Fukushima, Japan, from April 2021 to December 2021. Antibody titers following two doses of a COVID-19 vaccine were repeatedly monitored and information on lifestyle habits, comorbidities, adverse reactions, and medication use was collected. Using mathematical modeling and machine learning, we stratified the time-course patterns of antibody titers and identified vulnerable populations with low sustained antibody titers. Moreover, we showed that only 5.7% of the participants in our cohort were part of the "durable" population with high sustained antibody titers, which suggests that this durable population might be overlooked in small cohorts. We also found large variation in antibody waning within our cohort. There is a potential usefulness of our approach for identifying the neglected vulnerable population.


Assuntos
COVID-19
3.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.22.481436

RESUMO

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
4.
medrxiv; 2022.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2022.01.24.22269769

RESUMO

Appropriate isolation guidelines for COVID-19 patients are warranted. Currently, isolating for fixed time is adapted in most countries. However, given the variability in viral dynamics between patients, some patients may no longer be infectious by the end of isolation (thus they are redundantly isolated), whereas others may still be infectious. Utilizing viral test results to determine ending isolation would minimize both the risk of ending isolation of infectious patients and the burden due to redundant isolation of noninfectious patients. In our previous study, we proposed a computational framework using SARS-CoV-2 viral dynamics models to compute the risk and the burden of different isolation guidelines with PCR tests. In this study, we extend the computational framework to design isolation guidelines for COVID-19 patients utilizing rapid antigen tests. Time interval of tests and number of consecutive negative tests to minimize the risk and the burden of isolation were explored. Furthermore, the approach was extended for asymptomatic cases. We found the guideline should be designed considering various factors: the infectiousness threshold values, the detection limit of antigen tests, symptom presence, and an acceptable level of releasing infectious patients. Especially, when detection limit is higher than the infectiousness threshold values, more consecutive negative results are needed to ascertain loss of infectiousness. To control the risk of releasing of infectious individuals under certain levels, rapid antigen tests should be designed to have lower detection limits than infectiousness threshold values to minimize the length of prolonged isolation, and the length of prolonged isolation increases when the detection limit is higher than the infectiousness threshold values, even though the guidelines are optimized for given conditions.


Assuntos
COVID-19
5.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.06.16.20132985

RESUMO

The incubation period, or the time from infection to symptom onset of COVID-19 has been usually estimated using data collected through interviews with cases and their contacts. However, this estimation is influenced by uncertainty in recalling effort of exposure time. We propose a novel method that uses viral load data collected over time since hospitalization, hindcasting the timing of infection with a mathematical model for viral dynamics. As an example, we used the reported viral load data from multiple countries (Singapore, China, Germany, France, and Korea) and estimated the incubation period. The median, 2.5, and 97.5 percentiles of the incubation period were 5.23 days (95% CI: 5.17, 5.25), 3.29 days (3.25, 3.37), and 8.22 days (8.02, 8.46), respectively, which are comparable to the values estimated in previous studies. Using viral load to estimate the incubation period might be a useful approach especially when impractical to directly observe the infection event.


Assuntos
COVID-19
6.
medrxiv; 2020.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2020.05.30.20118067

RESUMO

Development of an effective antiviral drug for COVID-19 is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence for effective drugs from clinical studies is limited. The lack of evidence could be in part due to heterogeneity of virus dynamics among patients and late initiation of treatment. We first quantified the heterogeneity of viral dynamics which could be a confounder in compassionate use programs. Second, we demonstrated that an antiviral drug is unlikely to be effective if initiated after a short period following symptom onset. For accurate evaluation of the efficacy of an antiviral drug for COVID-19, antiviral treatment should be initiated before or soon after symptom onset in randomized clinical trials.


Assuntos
COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA